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Abstract. This paper focuses on transcription generation in the form
of subject, verb, object (SVO) triplets for videos in the wild, given o↵-
the-shelf visual concept detectors. This problem is challenging due to
the availability of sentence only annotations, the unreliability of con-
cept detectors, and the lack of training samples for many words. Fac-
ing these challenges, we propose a Semantic Aware Transcription (SAT)
framework based on Random Forest classifiers. It takes concept detec-
tion results as input, and outputs a distribution of English words. SAT
uses video, sentence pairs for training. It hierarchically learns node splits
by grouping semantically similar words, measured by a continuous skip-
gram language model. This not only addresses the sparsity of training
samples per word, but also yields semantically reasonable errors during
transcription. SAT provides a systematic way to measure the related-
ness of a concept detector to real words, which helps us understand the
relationship between current visual detectors and words in a semantic
space. Experiments on a large video dataset with 1,970 clips and 85,550
sentences are used to demonstrate our idea.
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1 Introduction

Humans can easily describe a video in terms of actors, actions and objects. It
would be desirable to make this process automatic, so that users can retrieve
semantically related videos using text queries, and capture the gist of a video
before watching it. The goal of this paper is generating video transcriptions,
where each transcription consists of a subject, verb and object (SVO) triplet.
We assume the videos to be unconstrained user captured videos possibly with
overlaid captions and camera motion, but that they are pre-segmented to be
short clips with a single activity, and a few objects of interest. One example is
shown in Figure 1 left.

Video transcription with SVO is an extremely challenging problem for several
reasons: first, as annotating actions and objects with spatio-temporal bounding
boxes is time-consuming and boring, in most cases, only video-level sentence
annotations are available for training (Figure 1 right). Second, although there
are several action and object datasets with a large number of categories [7, 26],
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Human annotations:
Three men are biking in the woods

Two cyclist do tricks
Guys are riding motorcycles

People ride their bikes
...

Output of SAT:
Person rides bike

Fig. 1. Left: one example of the testing videos we used. Right: our algorithm utilizes
sentence based annotations, and output subject, verb, object triplets.

a considerable amount of SVO terms are still not present in these categories.
Finally, even for the detectors with corresponding SVO terms, many of them are
still far from reliable when applied to videos in the wild [15].

Many papers on activity analysis have emerged recently. Usual goal is activity
or event classification of pre-defined categories [32, 27, 18]. For video transcrip-
tion problem where the combinatorial space of SVO triplets is much bigger and
sparse, it is hard to apply these techniques directly and learn a classifier for ev-
ery SVO triplet. Guadarrama et al. [14] proposed a video transcription method
YouTube2Text: they learned an SVM classifier for each term in candidate sub-
jects, verbs and objects, and used low-level and mid-level visual features [17] [30]
for classification. All these approaches treat each class (either an activity or a
term) independently, and ignore the semantic relationships between the classes.

We propose a semantic aware transcription framework (SAT) using Random
Forest classifiers. Inputs for the Random Forest classifiers are detection responses
from o↵-the-shelf action and object detectors. SAT’s outputs are in the form of
SVO triplets, which can then be used for sentence generation. To obtain the
SVO terms for training, we parse human annotated sentences and retrieve the
subject, verb and object terms. The labels of a training video contain the top k
most commonly used subject, verb and object terms for that video. For example,
the set of labels for video in Figure 1 may be (person, motorcyclist, ride, do,

bicycle, trick).
The core innovation of SAT is to consider the semantic relationships of SVO

labels during training. Semantic aware training is important when the labels are
user provided without a pre-defined small vocabulary set. On one hand, humans
may use di↵erent words to describe objects that are close visually or essentially
the same (bike and bicycle). On the other hand, for problems with a large number
of classes, semantically reasonable errors (tomato to potato) are more desirable
than unreasonable ones (tomato to guitar). SAT provides a framework for se-
mantic aware training: during node split selection of decision trees, it favors the
clustering of semantically similar words. Similarity is measured by continuous
word vectors, learned with the skip-gram model [21]. The skip-gram model op-
timizes context prediction power of words over a training corpus, and has been
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shown to produce word vector clusters with clear semantic similarities. Given
the learned word vectors, SAT picks the best node split by computing di↵eren-
tial entropy of word clusters. Each tree in the resulting forest divides training
samples hierarchically into semantically consistent clusters.

The detector responses used in this paper can be seen as candidate action
and object proposals. They are more suitable for the transcription task than low
level features, as action and object locations are not provided in the annotations.
Torresani et al. [29] showed that object detector responses provide competitive
performance when used as features for image classification task. SAT goes one
step further and provides a mechanism to measure the semantic map from a
detector type to output labels. The map measures the influence of a detector’s
response on the output probabilities of labels. For example, bicycle detector may
have high impact on both objects like bike or motorcycle as well as verbs like
ride.

SAT has the following highlights:
Larger vocabulary support. A Random Forest classifier is naturally suited

for multi-class classification. We can use a single Random Forest for arbitrary
vocabulary size. For SVM-based frameworks, the number of one-vs-rest classifiers
required grows linearly with vocabulary size.

Feature sharing for semantically similar words. By using a hierarchi-
cal structure, SAT allows sharing features for semantically similar words. For
example, horse and bicycle may go through the same path in a decision tree
until separated by a node with large tree depth. This is particularly useful for
training as words with few occurrence can be trained together with similar words
with more training samples.

Semantic reasonableness. SAT optimizes over semantic similarity instead
of binary classification error. In our framework, piano is considered a better

error for guitar than pasta. The resulting transcriptions are thus likely to be
more semantically reasonable.

The contribution of this paper is two-fold: First, we propose a semantic aware
learning algorithm for Random Forest classifiers, which has the potential of
producing semantically reasonable results. Second, we provide a mechanism to
compute semantic maps from detectors to words.

2 Related Work

Several recent papers have focused on generating descriptions for visual contents.
Kulkarni et al. [16] proposed a method to detect candidate objects and their
attributes from static images, and applied CRF for sentence generation. [1] used
object detection and tracking results to describe videos with simple actions and
fixed camera. In [15], the authors obtained the SVO triplets using object and
action detectors and reranked the triplet proposals with language models. A
related task to video description is event recounting, it asks a system to output
supporting evidence for a video event. [6, 19] used event labels as prior and built
CRF or SVM models with concept detector responses. All these approaches
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assume that the detectors carry direct semantic meanings and require trained
detectors for every action, object or attribute of interest. SAT is di↵erent from
these as it learns a hierarchical mapping from detector response space to word
space.

Alternatively, [25] proposed to classify semantic representations (SR) with
low level features, and used a CRF to model the co-occurrences of SR. It formu-
lated the conversion from SR to sentences as a statistical machine translation
problem and tested the idea on an indoor kitchen dataset. However, global low
level features may not be discriminative enough to identify actions and objects
for videos in the wild.

The idea of utilizing semantic relationships of annotations have motivated
several papers on image and video analysis. Topic model was used in [24] to
convert text into topic distribution vectors and group mid-level actions. Deng et

al. [8] observed the existence of a trade-o↵ between accuracy and specificity for
object categories and applied it to image classification. Specificity is measured
by an object’s depth in WordNet hierarchy. YouTube2Text system [14] extended
this idea and used data-driven hierarchies to generate SVO video transcriptions.
Both of them applied semantic hierarchy in the post-processing stage. Unlike
these approaches, SAT uses word vectors in a continuous semantic space, and
defines an adaptive similarity measurement for arbitrary word sets; semantic
similarity is explicitly used to learn the word maps.

3 Proposed Method

This section describes the Semantic Aware Transcription framework. We first
briefly introduce a vector based word representation in semantic space [21]. The
structure of Random Forest classifiers and their inputs are then described. Next,
we show how the semantic word vectors can be used to select the best node
split in Random Forest classifier training, such that training samples after split
become more similar in the semantic space. Finally, a mechanism is provided to
compute the semantic map for a concept detector.

3.1 Continuous Word Representation

Many existing Natural Language Processing techniques can be used to measure
semantic distances among di↵erent words. For example, WordNet [23] provides a
database of hierarchical word trees, on which semantic distances can be defined.
To learn data driven semantic structures, topic modeling techniques such as
Latent Dirichlet Allocation have been found to be useful [3].

We adopt the continuous word representation learned by skip-gram model
[22]. Given a sequence of training words {w1, w2, ..., wT

}, it searches for a vector
representation for each word w
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This objective function attempts to make the vector representation of se-
mantically close words behave similarly in predicting their contexts. In practice,
a hierarchical softmax function is used to make the training process computa-
tionally feasible. When trained on large text corpus, the Euclidean distances
between vectors of semantically similar words are small.

Compared with rule-based WordNet and the topic modeling techniques, con-
tinuous word representation is both data-driven and flexible. Once word vectors
are trained from an independent corpus, one can measure the semantic similarity
for an arbitrary set of words.

3.2 Video and Annotation Preprocessing

We assume each training video has several one-sentence descriptions annotated
via crowdsourcing. These sentences are parsed by a dependency parser [20], and
only subject, verb and object components are kept. Denote D
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After annotation preprocessing, every training video has a set of SVO words.

For subject and object words, although most of them correspond to concrete
objects, we lack the bounding boxes to locate them. Meanwhile, an annotated
verb may correspond to very di↵erent actions, like the verb play in play guitar

and play soccer. It is hard to learn verb detectors based on these annotations
directly.

We use o↵-the-shelf action and object detectors to represent a video [13,
28]. Training data for these detectors are obtained from independent datasets.
The types of trained detectors correspond to a very limited vocabulary and may
not contain the words used in video transcriptions. To apply object detectors, we
sample video frames and take the maximum response returned by a detector over
all sampled frames; action detectors are applied with sliding windows, and are
also combined by maximum pooling. The final video representation is a vector
of action and object detector responses S = [s1 s2 ... s

M

]. Each dimension
corresponds to a type of action or object detector.

3.3 Random Forest Structure

As illustrated in Figure 2, we use a forest of randomly trained decision trees to
map detector responses into posterior word probabilities.

Starting from the root, every non-leaf node k contains a simple classifier
�
k

(S) for vector S of detector responses based on a single type of detector
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Fig. 2. Illustration of a single decision tree used in SAT. Detector responses for a video
are used to traverse the tree nodes until reaching a leaf. Note that a horse detector
may not be needed in the process.

response. We have

�
k
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i
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> 0 Go to left

< 0 Go to right
(3)

where s
i

is the i-th concept in the vector, and ⌧ is the threshold.
Leaf nodes store word count vectors; as in traditional decision trees, a word

count vector is obtained by accumulating the SVO words from all training sam-
ples belonging to the leaf node. The final confidence score for word w
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where T is the forest size, c
t,w

is the count for word w at the leaf node of the
t-th decision tree.

The subject, verb and object terms with the highest confidence scores re-
spectively are selected to generate a sentence description for a video.

3.4 Learning Semantic Hierarchies

Ideally, we would like to learn a tree structure which encodes the semantic hier-
archy of SVO words. Towards this goal, we use the continuous word vectors to
measure the semantic compactness for a set of words.

DenoteW = {w1, w2, ..., wM

} as a group of words, and V = {v
w1 , vw2 , ..., vwM

}
the word vectors. Assume the underlying distribution of the word vectors is
Gaussian, we have
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where k is the dimension of word vectors, µ = [µ1 µ2 ... µ
k

] is the mean vector,
and ⌃ = diag(�1,�2, ...,�k

) is the diagonal covariance matrix. They can be
estimated from V by
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In analogy to entropy defined on discrete variables, we compute di↵erential
entropy H(µ,⌃) for the Gaussian distribution parametrized by ⌃ and µ follow-
ing

H(µ,⌃) =
1

2
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H(µ,⌃) measures the degree of uncertainty for the distribution: the lower the
value, the more certain the distribution is. For word vectors, since semantically
similar words lie close to each other, their estimated �’s should be small and the
di↵erential entropy low according to Equation 8. As a result, to achieve semantic
compact node splits, we minimize the weighted di↵erential entropy
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where V
l

and V
r

are the two groups of word vectors after node split.
It has been shown that the generalization error of random forests is deter-

mined by the strength of individual trees and correlation of the trees [4]. To
reduce correlation, we impose several types of randomness in training. First,
only a subset of training videos is sampled to train each decision forest. Sec-
ond, we randomly assign each node to consider only subject words, verb words
or object words, and use the selected word to compute di↵erential entropy as
defined in Equation 8. Finally, we use the node split selection criteria similar to
extremely randomized trees [12]: after a feature dimension is sampled, instead
of finding the best threshold to minimize Equation 9, we only choose a small
subset of candidate thresholds and pick the best one among them. The training
algorithm is summarized in Algorithm 1.

3.5 Computing Semantic Maps

In Section 3.2, we showed how to obtain a video representation based on pre-
trained action and object detectors. SAT does not require a detector to carry
direct semantic meaning indicated by its name, but uses its response to traverse
the semantic hierarchy defined by Random Forest classifiers.

Motivated by the variable importance estimation for Random Forest classi-
fiers [4], we use a similar scheme to compute semantic maps from input detector
types to output words. Let M be the number of action and object detectors, and
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Algorithm 1 SAT Training Algorithm
Input: A set S of training videos as concept response and word annotation pairs
Output: Random forest with T decision trees
for t = 1 to T do

Sample a subset of S as St

Call splitNode(St)
end for

splitNode(S):
if stop criteria not met then

Randomly select a node type from SVO
Randomly sample Nf feature dimension indices and Nt thresholds
Apply each weak classifier to split set S
Evaluate weak classifiers using words of selected type (Equation 9)
Select the weak classifier which minimizes Equation 9
Split S into Sl and Sr based on the selected weak classifier
Call splitNode(Sl) and splitNode(Sr)

else
Compute word counts and mark the node as leaf

end if

F be the trained Random Forest classifier. Given a set S of detector response
vectors, for each detector type m, we set its value for all vectors in S to the
lowest possible and the highest possible, and fix the values of all the other di-
mensions. This produces two modified sets S 0 and S 00. We apply F on S 0 and S 00

to get the word probabilities. The correlation of the m-th detector and a word
w is measure by

'
m

(w) =
NX

i=1

|f 0
w

(i)� f 00
w

(i)| (10)

Here f 0
w

(i) is w’s probability for the i-th sample in S 0, and f 00
w

(i) is its probability
for the i-th sample in S 00. Higher value of '

m

(w) indicates a strong map between
the detector type and the word.

3.6 Discussion

One major di↵erence of SAT from traditional Random Forest classifiers is the
node split criteria during training. SAT fits a group of semantic word vectors
using a Gaussian distribution with diagonal covariance matrix, and computes dif-
ferential entropy to measure the semantic compactness. The penalties of group-
ing semantic similar words are smaller. For example, the split of (drive, ride)
and (cut, slice) should be better than (drive, slice) and (cut, ride). Traditional
Random Forest classifiers cannot distinguish the two as their discrete entropies
are the same. This di↵erence makes SAT produce more semantically reasonable
predictions.
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Video transcription using SAT is fast (tens of comparisons for each decision
tree, and hundreds of trees in total). For training, it only evaluates the randomly
sampled thresholds instead of searching for the optimum, which can be done very
e�ciently. Since there is no interaction between di↵erent trees, both training and
testing of SAT can be parallelized easily.

Our method to compute semantic map is related to, but di↵erent from, vari-
able importance estimation: we measure only the change in output word prob-
abilities; instead of filling in randomly selected values, we select only the maxi-
mum and minimum possible values for that dimension, so that all nodes using
this dimension to make decision are toggled.

Computed semantic maps provide several indications: if the semantic mean-
ing of a detector’s name and its top mapped words are identical or very similar,
it is quite likely that the detector outputs are reliable. Besides, if an object detec-
tor’s top mapped words contain verbs or an action detector’s top mapped words
contain objects, the combination should appear frequently in training videos.

4 Experiments

In this section, we first describe our experiment setup and the dataset used for
evaluations. Next, we compare the performance of SAT with several other video
transcription frameworks. Semantic maps learned by SAT are shown at the end
of this section.

4.1 Dataset

We used the YouTube dataset collected by Chen and Dolan [5]. There are 1,970
short video clips with 85,550 sentence-based video descriptions in English. Videos
were annotated by Amazon Mechanical Turk workers.

Object detector training data were provided by PASCAL VOC challenge
[9] and a subset of ImageNet [7]. There are 243 categories in total. For action
detector training, we used UCF 101 dataset [26] with 101 categories.

4.2 Experimental Setup

We followed data partitioning used in [14], there are 1,300 training videos and
670 testing videos.

Stanford parser [20] was used to extract the subject, verb and object compo-
nents from the sentence associated with the videos. Some of the extracted words
are typos or occur only a few times, we filtered these words out; this results in a
dictionary size of 517 words. As annotators tend to describe the same video with
diverse words, each video was described by the one most common subject, the
two most common verbs and the two most common objects. Unless otherwise
specified, we used this set of words as the groundtruth to train the classifiers
and measure the accuracy of video transcription.
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We used the continuous word vectors pre-trained on Google News dataset. It
was provided by the authors of [22]. The dimension of each word vector is 300.

Deformable part models (DPM) [11] were used to train object detectors. Part
of the detector models were downloaded from [2]. The object detector works on
static frames. We uniformly sampled frames every second, and used maximum
pooling to merge the detector confidence scores for all sampled frames in the
same video.

To learn action detectors, we first extracted motion compensated dense tra-
jectory features with default parameters [31], and encoded the features with
Fisher Vectors [28]. We set the number of clusters for Fisher Vectors as 512, and
computed Fisher Vectors for the HOG, HOF and MBH components separately.
A linear SVM [10] was then trained for each action category with a single type
of features. We used average fusion to combine the classifier outputs.

Parameter set for Random Forest classifiers includes the number of decision
trees T , the number of sampled feature dimensions N

f

and thresholds N
t

, as
well as the max tree depth D. Parameters were selected by measuring out-of-
bag errors (OOB) [4]. It was computed as the average of prediction errors for
each decision tree, using the non-selected training data.

4.3 Performance Evaluation

Verb Top correlation
come go
run walk

spread mix
fry cook
put pour

Object Top correlation
scooter bicycle
finger hand

motorbike car
vegetable onion
computer camera

Table 1. Top correlated verb and object pairs in SAT

We first qualitatively show how SAT uses semantic similarity to group train-
ing samples. We computed correlation of two words based on their number of
cooccurrences in SAT’s leaf nodes. To avoid correlation introduced by multiple
annotations for the same video, we used only a single SVO triplet for each video.
Table 1 shows several subject or object words with their top correlated words.
As we can see, most of the pairs are both semantically close and visually related.

For quantitative evaluation, we compare our proposed SAT framework with
the following two baselines:

Random Forest with no semantic grouping (RF). Every word un-
der this setting was treated as an independent class. Node split is selected by
computing the discrete entropy.

Linear SVM (SVM). A linear SVM classifier was learned for every word,
using the detector responses as input features.
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We fixed T = 150 and D = 40 for SAT and RF. N
f

and N
t

were selected by
OOB. For SVM system, we fixed the soft-margin penalty ratio between positive
and negative samples as the inverse of their sample size ratio, and used cross
validation to select the cost parameter.

Method Subject accuracy Verb accuracy Object accuracy
SAT 0.816 0.344 0.244
RF 0.816 0.312 0.152
SVM 0.726 0.281 0.191

Table 2. Accuracy comparison among our proposed SAT, a traditional RF and a linear
SVM

Table 2 shows the accuracy comparison for the three methods. It is easy to
see that our proposed SAT provides better performance in both verb accuracy
and object accuracy, compared with the other two systems which do not use
semantic relationships during training. In Figure 3, we also show some of the
transcription results. SAT provided the correct SVO triplets for the top two
examples, and related triplets for the middle two examples. The bottom one is
a case where SAT returned wrong result.

Method Subject accuracy Verb accuracy Object accuracy
SAT 0.792 0.306 0.188

YouTube2Text [14] 0.809 0.291 0.170

Method Subject WUP Verb WUP Object WUP
SAT 0.927 0.625 0.590

YouTube2Text [14] 0.926 0.468 0.467

Table 3. Accuracy and WUP comparisons between our proposed method and
YouTube2text [14]

We also compare the performance of SAT with the YouTube2Text system
proposed by [14]. It used semantic hierarchies to convert unconfident SVO pro-
posals to terms with higher semantic hierarchy. Their evaluations included a
binary accuracy measurement using only the most common SVO triplet per
testing video, no semantic conversion was used for this evaluation. To make our
results comparable, we used the groundtruth labels provided by the authors.
WUP metric was also used for evaluation. It is computed by

s
WUP

(w1, w2) =
2 ·D

lcs

D
w1 +D

w2

(11)

where lcs is the least common ancestor of w1 and w2 in the semantic tree defined
by WordNet, and D

w

is the depth of w in the semantic tree. It provides the
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semantic similarity of w1 and w2 defined by the rule-based WordNet. Since a
word may have multiple entries in WordNet, we used the set of entries provided
by [14].

In Table 3, the binary accuracy of SAT is comparable to YouTube2Text in
subject terms, and better in verb and object terms. For the WUP measure where
semantic relatedness is being considered, SAT outperforms the YouTube2Text
system by a large margin.

4.4 Visualization of Semantic Maps

Finally, we visualize some of the detector semantic maps in Figure 4. The maps
were computed using testing videos. It can be seen that some of the detectors
have semantically close mappings in the word space. Many action detectors we
used involve objects, this is reflected by their top mapped words (board for
drawing on board detector). It is also interesting to see that some detectors are
connected with the top mapped words through motion patterns (the word dance

and the salsa spin detector). This observation also holds for object detectors.
The maps also illustrate how SAT handles the words outside the detectors’
vocabulary.

5 Conclusion

We propose a Semantic Aware Video Transcription (SAT) system using Ran-
dom Forest classifiers. SAT builds a hierarchical structure using the response
of action and object detectors. It favors grouping of semantically similar words,
and outputs the probabilities of subject, verb, object terms. SAT supports large
vocabulary of output words, and is able to generate more semantic reasonable
results. Experimental results on a web video dataset of 1970 videos and 85,550
sentences showed that SAT provides state-of-the-art transcription performance.
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GT: Person rides bicycle.
SAT: Person rides bicycle.

RF: Person tries ball.
SVM: Person rides bicycle.

GT: Person dances rain.
SAT: Person dances group.

RF: Person does hair.
SVM: Person kicks video.

GT: Person does exercise.
SAT: Person does exercise.
RF: Person does pistol.
SVM: Person gets pencil.

GT: Person runs ball.
SAT: Person plays ball.
RF: Person hits ball.

SVM: Person kicks garden.

GT: Person eats pizza.
SAT: Person makes food.

RF: Person goes something.
SVM: Person makes box.

GT: Person drives car.
SAT: Person rides car.

RF: Person moves bicycle.
SVM: Person does pool.

Fig. 3. Testing videos with SVO triplets from groundtruth (GT), SAT, RF and SVM.
Exact matches are marked in blue, semantic related verbs and objects are marked in
red.
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writing on board salsa spin

playing guitar long jump

horse riding hula hoop

whale washer

horse burrito

Fig. 4. Visualization of semantic maps for some action and object detectors.
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